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Abstract—In a Wireless Sensor Network (WSN) node, as the
input traffic increases, the throughput can be assumed to first
increase and then start to decrease, indicating congestion in the
buffer. This suggests the need for an admission control mecha-
nism to maintain high throughput as the arrival traffic increases.
Considering the stochastic nature of WSNs, the information of
the queue-length of arrival or newly sensed data packets can be
unknown to a sensor node. This paper proposes a probabilistic
admission control model with the maximum throughput for the
node. In the proposed model, a reward when a data packet
arriving to a sensor is accepted (not rejected) for transmission
is considered, but a holding cost per unit time for the delay
of accepted data packets in the sensor is also incurred. For
the sensor node, by constructing a suitable Markov decision
process (MDP), a probabilistic admission control algorithm on
how to accept data packets on sleep and active phases to
achieve a maximum throughput is proposed. Furthermore, for
the identified (p; q) model, the energy consumption of the node
in active and sleep phases, as well as the energy consumption
switching from active to sleep per unit time and vice versa
is investigated. An extensive simulation is implemented. The
numerical results show that the problem is effectively solved by
an optimal scheme with high energy efficiency. The results of
this paper can be applied in designing optimal sensor nodes in
WSNs

Index Terms—Maximum throughput, probabilistic admission
control, queue-length, discounted reward, energy performance

I. INTRODUCTION

W IRELESS Sensor Networks are widely used in many
areas, such as environmental monitoring, disaster

warning and industrial intelligence, due to the simple deploy-
ment and low cost. In WSNs, nodes sense variables from the
environment and exchange collected data with other nodes
through data packets. Throughput is a metric in WSNs. As
the throughput increases, the load of the node increases.
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Admission control policies for maintaining high throughput
for a network have been an ongoing research topic for a long
period of time [1]. In admission control models, there exists
a holding cost for the delay of data packets in a sensor. The
holding cost increases as the increase of data packets in the
sensor’s buffer [2], [3], [4]. Developing an optimal admission
control policy in data gathering process is meaningful in
WSNs.

The traffic characteristics and communication patterns in
WSNs are partial and vague [5], [6]. Information has a decisive
effect during the admission control process. However, many
authors consider this process to be ideal and they suppose
systems can acquire all the information to make the correct
decision [7], [8], [9]. For the complexity of WSNs, a node may
work with partial information. For example, in [10], consid-
ering the information of the queue-length at the transmitter is
not known at the receiver, authors have proposed a sleep/wake
scheduling at the wireless node. In the model, packets are
assumed to be received with probability p. In [11], an active
queue management (AQM) mechanism is proposed to estimate
the congestion and avoid the congestion by means of dropping
packets with different probabilities for different arrival packets.
It is meaningful to study the admission control process of
sensor nodes in the case of partial information, in which a
sensor node may not know the information of the queue-length
of arrival data packets.

In this paper, with the sleep/active scheme, we consider
to obtain a maximum throughput during the data admission
process with the Markov Decision Process (MDP) model. We
mainly consider a two-phase model. The first stage is used to
manage the admission of arrivals and the second one is used
to manage the service. In the fist stage, the receiver or sensing
subsystem of a sensor node does not know the information
of the queue-length of arrival or newly sensed data packets.
However, the common information which includes the data
packets’ arrival rate, service rate, the sleep and active duration
features of the sensor node is known.

The contributions of this paper are as follows.
• First, we propose a novel (p; q) policy for data admission

process. If a sensor node does not know arrival data
packets’ queue-length information, it is not wise to accept
all arrival data packets. The holding cost for the delay of
data packets in the sensor will be increased as the increase
of data packets. We propose a (p; q) admission model for
the sensor node. In the sleep status, the sensor accepts
data packets with probability p and on active status, it
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accepts data packets with probability q. The proposed
model can reflect the different behavior of a sensor node
on sleep and active status.

• Second, we present a MDP-based method to the problem
of maximum throughput under data admission process
with the (p; q) policy. For a sensor node, an immediate
reward is obtained once a data packet is accepted into
the sensor. However, a holding cost is incurred during
the delay of data packets in the sensor. Based on the
MDP, a decision rule during data admission control
is obtained. Results of the optimal value of (p; q) for
the maximum throughput under data admission control
process are verified. The solution of the (p; q) policy can
be implemented based on a reference table, which can be
stored in the sensor node’s memory for online operations
with minimal complexity. It also can be implemented by
the MDP-Based dynamic optimization methodology in
[12].

• Finally, we derive the sensor node performance from
energy consumption (energy consumption switching from
the sleep status to the active status and switching from
the active status to the sleep status, average energy con-
sumption in the sleep status and in the active status.) as
the sensor in sleep/active mode changes with the optimal
(p; q) policy, which can be used to redesign the working
process of sensor nodes for a better performance.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. We describe the system model and
formulate our problem in Section III. We present the maximum
throughput with admission control for the proposed model
which is also the most important part of this paper in Section
IV. The performance evaluation from energy consumption is
given out in Section V. The experimental results are presented
in Section VI. Finally, We conclude our work in Section VII.

II. RELATED WORK

Throughput is a metric in the device design and imple-
mentation of WSNs. A lot of work is done to analyze the
throughput of WSNs. The queue model is an important tool to
analyze the performance of sensor nodes. For example, in [13],
the average network throughput is analyzed with a proposed
finite queuing model of a sensor node. In [14], the authors
propose a Markov model to describe the behavior of SMAC
with a finite queue capacity. With the model, the expected
throughput of SMAC under variable number of nodes, queue
capacities, contention window sizes, and data arrival rates is
studied. In [15], a stochastic model of WSNs in which each
sensor node randomly and alternatively stays in an active mode
or a sleep mode is investigated. In the model, authors analyze
the throughput with the Markov model.These research work
([13], [14], [15]) indicate that as the arrival rate or service rate
of data packets increases, the value of the throughput can be
assumed to increase. Meanwhile, the cost for maintaining the
sensor increases, too.

Despite that many proposed mechanisms that can be used
to analyze and optimize the throughput in a WSN, in some
scenarios the required constraints for the throughput can not

be available in the network. It is meaningful to control arrival
data packets’ cost in a sensor node’s operating when we
maintain the required throughput. Thus, an admission control
mechanism can be used to monitor arrival data packets.

Admission control can be addressed with regard to energy
consumption, resource utilization, or feasibility. It can also
be addressed at different levels, like the packet/MAC level,
flow/connection level, node level, or service level [16]. In
[17], during data admission process, a threshold N has been
derived to obtain minimum power consumption for a sensor
node while considering each different data packets’ arrival
rate. In [18], to obtain the maximum discounted reward during
data admission process, a (M ;N) policy about when to admit
arrival data packets and when to reject arrival data packets is
verified. In [19], the authors propose real-time measurements
of the energy consumption by individual applications, then
they propose an optimal admission control policy and a post-
admission policing mechanism at the node-level. The approach
trades between energy consumption and user rewards. Few
of these existing work ([16], [17], [18], [19]) have addressed
admission control for throughput in WSNs. And most of them
assume all the information are known when the node makes
decision.

A sensor node works like a queue server [1], [15], [20],
[21]. In a queue, a server can only know partial information
and not know the information of the queue-length of arrival
or newly sensed data packets. In this paper, we investigate a
model for a maximum throughput on admission control with
sleep/active scheme in sensor nodes using MDP method. In our
model, a sensor node has no knowledge about the number of
arrival or newly sensed data packets. Thus, we assume that on
sleep status, data packets are accepted by the sensor node with
probability p. On active status, data packets will be accepted
by the sensor node with probability q. With this, we model
the admission process with MDPs, in which, a reward will be
obtained when a data packet from a sensor is accepted and
at the same time, a holding cost also exists for data packets’
delay in the sensor. We focus on the problem that a sensor
node how to make decision strategies to make sure the long
term discounted reward for accepting an arrival data packet is
not less than that for rejecting it in the sleep and active phase,
respectively. With the decision strategies, we consider how to
get a maximum throughput. Finally, we study the influence of
the proposed (p; q) policy on energy consumption.

III. MAXIMUM THROUGHPUT BASE MODEL

We consider a WSN in which static sensor nodes are
randomly located in a given region. All sensor nodes are
mainly used to sense variables from the environment and
exchange the collected data with other nodes through data
packets. To reduce energy consumption, all sensor nodes are
configured with the sleep/active scheme. In real-application
environments, due to the existence of signal interference and
noise, the packet cannot be received successfully [22]. To be
more practical and realistic, instead of taking the deterministic
network model, we define a probabilistic network model,
where a sensor node cannot know the information of the
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queue-length of arrival or newly sensed data packets. So, in the
network mode, sensor nodes receive arrival data packets with
probability. There exists a holding cost for data packets’ delay
in the sensor, a switching on cost when a sensor is switched
on and a switching off cost when a sensor is switched off.
In the meanwhile, a reward also exists for an admitted data
packet. To study the optimal admission control problem with
the sleep/active scheme for the maximum throughput, in this
section, we provide the detailed description of our model.The
descriptions of the symbols and notations used in this paper
can be summarized in the Table I.

TABLE I: Summary of Notations
Symbols Definition

η Switching-on rate.
γ Switching-off rate.
λ0 Data packets’ sensing rate.
λE Data packets’ arriving rate from other sensors.
µ Data packets’ processing rate.

f(i) Holding cost rate per unit time with i data packets.
E1 Switching-on cost per time.
E2 Switching-off cost per time.
p Data packets received probability on sleep status.
q Data packets received probability on active status.

A. Assumptions

In order to better describe the proposed model, an illustra-
tion of the working model of a sensor node is provided in Fig.
1. The following assumptions and notations are introduced for
sensor nodes being investigated in this sensor network.

Fig. 1: The working model of a sensor node.

(1) The duration of a sensor in a sleep mode is distributed
exponentially with a mean of 1/η. On sleep status,
the sensor can generate data packets with its sensing
subsystem according to a Poisson process at a rate of
λ0.

(2) The duration that a sensor spends in the active status is
distributed exponentially with a mean of 1/γ. During the
active status, the sensor node may

– generate packets according to a Poisson process at a
rate of λ0;

– receive packets coming from other sensors in accor-
dance to a Poisson process at a rate of λE ; and

– process (transmit or relay) data packets with negative
exponential distribution with a mean rate of µ.

From the definition above, we can define these data
packets in active status follows a Poisson process with

a rate of λ1. It is clearly that λ1 = λ0 + λE . When a
sensor node ends its active status, it will switch to the
sleep status.

(3) For a sensor node, accepting a data packet would obtain
R units of reward. While, once a newly data packet is
generated in its buffer, the sojourn time in the node will
result in holding cost. Let f(i) be the holding cost rate
per unit time with i data packets. f(i) can be assumed to
be positive, increasing, unbounded function. Meanwhile,
transforming a sensor from the sleep status to the active
status would generate E1 units of switching-on cost and
transforming a sensor from the active status to the sleep
status would generate E2 units of switching-off cost.

(4) On sleep status, data packets are received by a sensor
node with probability p, and on active status, data packets
are received by a sensor node with probability q.

(5) The information sensed by a sensor node is organized
into data units of fixed size that can be stored at the
sensor in a buffer of infinite capacity; the buffer is
modeled as a centralized FIFO queue. Sensor nodes
cannot simultaneously transmit and receive. The wireless
channel is assumed to be error-free, which is to say, if
a data packet is transmitted, it will successfully arrive at
its destination node.

B. The maximum throughput problem under data admission
control

With the above assumptions, the maximum throughput
problem under data admission control process in a sensor node
can be formulated as follows:

Given:
• The sensor node works on a sleep/active scheme at the

η/γ rate.
• On sleep status, data packets arrive at a rate of λ0p. On

active status, data packets arrive at a rate of λ1q and is
processed at a rate of µ.

• A sensor is in the sleep status with i data packets with
the probability of πSi = P (Si) and in the active status
with i data packets with the probability of πRi = P (Ri),
where i = 0, 1, 2, · · · .

Objective: Find the probability (p, q) to maximize the
throughput Q of the sensor node which is defined as the
average number of the data packets transmitted per unit time
as follows.

Q(p, q) =
∞∑
i=1

P (Ri)µ. (1)

Subjective To:
During data admission process,

1) on sleep status, the total expected discounted reward for
an arrival data packet’s acceptance of a sensor is not less
than that for its rejective; and

2) on active status, the total expected discounted reward for
an arrival data packet’s acceptance of a sensor is not less
than that for its rejective.

From Equation (1), we can see that to obtain the maximum
throughput during data admission process in the sensor node,
it is important to solve the data admission control problem. In
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the following sections, we will discuss our proposed solutions
for obtaining the maximum throughput during data admission
process in detail.

IV. PROPOSED MODEL FOR MAXIMUM THROUGHPUT

In this section, for the proposed objective function, we firstly
need to seek the throughput during data admission process in
the sensor node and then, we need to solve the problem of
the constraints of our proposed objective function. With these
work, we can finally to obtain the optimal probability (p; q)
for maximum throughput during data admission process.

A. Throughput during data admission process

During the data admission process, we can get that with the
sleep/active scheme, data packets arrive at a rate of λ0p on
sleep status, and at a rate of λ1q on active status. Meanwhile,
the sensor node process data packets at a rate of µ on active
status. Thus, the transition rate diagram can be illustrated as
Fig.2.

Fig. 2: Transition rate diagram of a sensor node.

Theorem 1. The throughput of a sensor node in the investi-
gated WSNs is

Q(p, q) =
λ1ηq + λ0γp

γ + η
.

Proof: The throughput Q of a sensor node which is
defined as the average number of the data packets transmitted
per unit time. Thus,

Q(p, q) =

∞∑
i=1

P (Ri)µ.

The corresponding transition rate matrix T of the constructed
multi-dimensional Markov process in Fig.2 can be given by

T =


B0 A0 0 0 0 · · ·
A2 A1 A0 0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
...

...
...

...
...

. . .

 ,

where

B0 =

[
−(η + λ0p) η

γ −(γ + λ1q)

]
, A0 =

[
λ0p 0
0 λ1q

]
,

and

A1 =

[
−(η + λ0p) η

γ −(µ+ γ + λ1q)

]
, A2 =

[
0 0
0 µ

]
.

We have
πi = π0H

i, for i = 0, 1, 2, · · · ,

where matrix H is the minimal non-negative solution to the
matrix-quadratic equations

H2A2 +HA1 +A0 = 0,

and π0 is the unique position solution of the equations

x0(B0 +HA2) = 0 and x0(I −H)−1e = 1,

in which e is a two-dimensional column vector with all its
components of 1. According to [15], we finally obtain that

H =

[
(γ+µ)λ0p
(λ0p+η)µ

λ0p
µ

γλ1q
(λ0p+η)µ

λ1q
µ

]
,

and

π0 = [
η(µ− λ1q)− γλ0p

µ(η + γ)(λ0p+ η)
γ,

η(µ− λ1q)− γλ0p

µ(η + γ)
].

Thus,
P (S0) =

γ(ηµ− γλ0p− ηλ1q)

µ(γ + η)(λ0p+ η)
,

P (R0) =
(µ− λ1q)η − γλ0p

(γ + η)µ
.

From the transition diagram in Fig.2, we also can have

P (S)η = P (R)γ,

and
P (S) + P (R) = 1.

Therefore, the throughput of a sensor node in the investigated
WSNs is

Q(p, q) =

∞∑
i=1

P (Ri)µ = [P (R)− P (R0)]µ =
λ1ηq + λ0γp

γ + η
.

The proof is finished.
Remarks. The higher value of p and q are, the higher

throughput of a sensor node will be. However, the holding
cost of the sensor node will be more, too. Thus, it is very
important to control the length of data packets in a sensor
node. For the (p; q) scheme, there is no knowledge about the
information of the queue-length of arrival or newly sensed data
packets. It is useful to investigate the average number of data
packets in the sensor node.

Theorem 2. When data packets’ average arriving rate is less
than the processing rate, which is to say ηµ > ηλ1 + γλ0,
then, in the sleep status, the average number of data packets
in a sensor node is given by

LS =
−λ0λ1pq + γλ0p+ λ0µp+ λ1ηq

(ηµ− γλ0p− λ1ηq)(γ + η)
γ,

and in the active status, the average number of data packets
is

LR =
γλ2

0p
2 + γλ0ηp+ λ1η

2q

(ηµ− γλ0p− λ1ηq)(γ + η)
.

Proof: See the Appendix A.
For a sensor node, it needs to receive and process (transmit)

data packets which is just like a server. Admitting a data packet
would bring a reward to the sensor node but holding each data
packet in the node would also incur some expenses (or cost).
Thus, it is very important to control the admission process in
a sensor node.
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B. CTMDP framework for sensor nodes’ behavior

The behavior of a sensor node about accepting or rejecting
arrival data packets can be modeled as a stochastic dynamic
programm problem in which a decision rule prescribes a
procedure for action selection in each status at a specified
decision epoch. In general, a policy π is a sequence π1, π2,
. . . of decision rules where πi is the decision selected when a
sensor is in the ith state, which tells how to select an action
after completion of the (i − 1)th transition. We denote π(s)
as the action to take when the system occupies state s. Given
policy π, denote the total expected infinite-horizon discounted
reward when starting from state s by vπα(s). α > 0 is the
discount factor so that a reward r received has present value
re−αt after some time t. The total expected infinite-horizon
discounted reward with state s is

vπα(s) = Eπ
s

{∫ ∞

0

e−αtr(st, at)dt

}
, (2)

st stands for the state at time t, at is the action to take at state
st, and r(st, at) is the total reward obtained when action at
is selected at state st.

With these description, during data admission process, we
need to make sure that on sleep status, the total expected
discounted reward for an arrival data packet’s acceptance of
a sensor is not less than that for its rejective and on active
status, the total expected discounted reward for an arrival data
packet’s acceptance of a sensor is not less than that for its
rejective. For this purpose, we will introduce the method of
continuous-time Markov Decision Process (CTMDP) which
can be uniquely identified by the following five components:
state space, action space, decision epochs, the transition prob-
abilities, and the reward function.

• State space: At each decision epoch, the system occupies
a state. We denote the set of possible states of a sensor
by S. In our scheme, state space S = {s : s = ⟨δ, b⟩},
δ ∈ {0, 1} and b ∈ {A,D,C}. δ = 0 means the sensor is
in the sleep status and δ = 1 indicates that the sensor is in
the active status. b = A stands for the recent packet event
is an arrival of a data packet, b = D means the recent
packet event is a process of a data packet and b = C
means the recent packet event is a switching of the node.

• Action space: In this model, there are three different
actions As = {aA, aR, aC}. For a node, when the most
recent event is an arrival of a new data packet, it may
accept the arrival data packet with action aA, or reject the
new arrival data packet with action aR. If the most recent
event is a process of a data packet or a switching of the
sensor node, then the node takes an action, denote by aC ,
to continue. Thus, we have A⟨0,A⟩ = A⟨1,A⟩ = {aA, aR}
and A⟨1,D⟩ = A⟨0,C⟩ = A⟨1,C⟩ = {aC}.

• Decision epochs: The decision epochs are those time
points when a new data packet is arrived, a data packet
is processed or when a new status occurs (switching on
or switching off). At each decision epoch, let τ(s, a)
be the sojourn time starting from state s with action
a. Therefore, based on the superposition property of
exponential distributions, τ(s, a) will be an exponential

random variable with a rate, say β(s, a), and the proba-
bility that the next decision epoch occurs within t time
units is give by

P (τ(s, a) ≤ t) = 1− e−β(s,a)t, t ≥ 0.

With the (p, q) scheme, β(s, a) can be written as,

β
(
⟨δ, b⟩, a

)

=



λ0 + η, s = ⟨0, A⟩, a = aA or aR,

λ0 + η, s = ⟨1, C⟩, a = aC ,

λ1 + µ+ γ, s = ⟨1, A⟩, a = aA or aR,

λ1 + µ+ γ, s = ⟨1, D⟩ or ⟨0, C⟩, a = aC .

• Transition probability: Let q(m|s, a) denote the proba-
bility that the system occupies state m in the next epoch,
if at the current epoch the system is at state s and
the decision maker takes action a ∈ As. The function
q(m|s, a) is called a transition probability function, which
should be specific for each problem and satisfies that∑

m∈S q(m|s, a) = 1. In the (p, q) scheme, a node does
not know the exact information about itself. The transition
probability is as follows.
For the active status, s = ⟨0, C⟩ and a = aC , the
transition probability is,

q(m|⟨0, C⟩, aC) =


λ1

λ1+µ+γ , m = ⟨1, A⟩,
µ

λ1+µ+γ , m = ⟨1, D⟩,
γ

λ1+µ+γ , m = ⟨1, C⟩.

It is clear that

q(m|⟨1, A⟩, aR) = q(m|⟨1, A⟩, aA)

= q(m|⟨1, D⟩, aC)

= q(m|⟨0, C⟩, aC).

When the sensor is in the sleep status, s = ⟨1, C⟩ and
a = aC , the transition probability is,

q(m|⟨1, C⟩, aC) =


λ0

λ0+η m = ⟨0, A⟩,
η

λ0+η m = ⟨0, C⟩.

For state s = ⟨0, A⟩, and action a = aA or a = aR, it is
obvious that

q(m|⟨0, A⟩, aR) = q(m|⟨0, A⟩, aA)

= q(m|⟨1, C⟩, aC).

• Reward functions: Because the system state does not
change between decision epochs, the expected discounted
reward between epochs satisfies

r(s, a) = k
(
s, a

)
+ c(s, a)Ea

s

{∫ τ(s,a)

0

e−αtdt

}
= k

(
s, a

)
+

c(s, a)

α+ β(s, a)
,

where r(s, a) is the reward obtained at status s with
action a, k

(
s, a

)
is the lump reward obtained when a new

state and action is observed and c
(
s, a

)
is the continuous

rewards accumulated between decision epochs.
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During data admission control process, the holding cost
is quite important, which usually cannot be neglected
in WSNs [15], [23]. So, the reward function consists
of four different parts in our scheme: holding cost rate
f(i), reward R for a data packet’s acceptance, switching
cost E1 per time from sleep status to active status and
switching off cost E2 per time from active status to sleep
status. According to the analysis of our proposed model,
we have

k(⟨δ, b⟩, a) =



Rp, δ = 0, b = A, a = aA,

Rq, δ = 1, b = A, a = aA,

−E1, δ = 0, b = C, a = aC ,

−E2, δ = 1, b = C, a = aC ,

0, others,

and

c(⟨δ, b⟩, a) =



−pf(LS + 1)− (1− p)f(LS),

δ = 0, b = A, a = aA,

−f(LS), δ = 0, b = A, a = aR,

−f(LR), δ = 0, b = C, a = aC ,

−f(LS), δ = 1, b = C, a = aC ,

−f(LR), δ = 1, b = D, a = aC ,

−qf(LR + 1)− (1− q)f(LR),

δ = 1, b = A, a = aA,

−f(LR), δ = 1, b = A, a = aR.

A policy is said to be α-optimal if its expected α-discounted
return is maximal for every initial state. During each decision
epoch, the status is stationary. The optimal policy is a station-
ary deterministic policy. From [24], the constraint function in
equation (2) can now be replaced by the following Bellman
equation:

vα(s) = max
a∈A

{
r(s, a) +

β

α+ β

∑
m∈S

q(m|s, a)v(m)

}
. (3)

By noting there is only one possible action aC for states
s = ⟨0, C⟩, s = ⟨1, C⟩, and s = ⟨1, D⟩. Therefore, we have

v
(
⟨0, C⟩

)
=− E1 +

1

α+ λ1 + γ + µ

{
− f(LR) + λ1v

(
⟨1, A⟩

)
+ γv

(
⟨1, C⟩

)
+ µv

(
⟨1, D⟩

)}
,

v
(
⟨1, C⟩

)
=− E2 +

1

α+ λ0 + η

{
− f(LS) + λ0v

(
⟨0, A⟩

)
+ ηv

(
⟨0, C⟩

)}
,

and

v
(
⟨1, D⟩

)
= v

(
⟨0, C⟩

)
+ E1 +

f(LR)− f(LR)

α+ λ1 + γ + µ
.

C. Optimal control policy

With the CTMDP model, here, we study the problem how to
make sure the total expected discounted reward for an arrival
data packet’s acceptance of a sensor is not less than that for
an arrival data packet’s rejective.

Theorem 3. For the (p; q) scheme, to satisfy the constraints
of admission control, the decision rule is

d
(
⟨1, A⟩

)
=

aA, R ≥ f(LR+1)−f(LR)
α+λ1+µ+γ ,

aR, R < f(LR+1)−f(LR)
α+λ1+µ+γ ,

and

d
(
⟨0, A⟩

)
=

aA, R ≥ f(LS+1)−f(LS)
α+η+λ0

,

aR, R < f(LS+1)−f(LS)
α+η+λ0

.

Proof: See the Appendix B.
Remarks. From this theorem, it can be seen that the

switching on cost E1 and switching off cost E2 have no
influence on the decision rule during admission process.

D. Optimal (p; q) policy

With the above models of throughput and the admission
control, in this subsection, we focus on the problem how
to determine the optimal (p; q) policy for the maximum
throughput under the admission control constraints.

Definition 1. For any i ≥ 0, a discrete function f(i) is
convex on i if

f(i+ 1)− f(i) ≥ f(i)− f(i− 1),

and is concave on i if

f(i+ 1)− f(i) ≤ f(i)− f(i− 1).

Definition 2. Let’s define that

g1(p, q) = f(LR + 1)− f(LR)−R(α+ λ1 + µ+ γ),

and

g2(p, q) = f(LS + 1)− f(LS)−R(α+ λ0 + η).

From theorems 1-3, we finally can get that our objective
function in Equation (1) can be written as

max
p,q

λ1ηq + λ0γp

γ + η
, (4)

s.t. gi(p, q) ≤ 0, i ∈ {1, 2},

0 ≤ p ≤ 1, 0 ≤ q ≤ 1.

To solve Equation (4), we can relax the admission control
constraints and solve the problem by introducing the La-
grange multipliers method [25]. Let’s define that g3(p, q) =
p, g4(p, q) = q, g5(p, q) = p − 1, g6(p, q) = q − 1, and
L(p, q, ν) = −Q(p, q) +

∑
j νjgj(p, q). Thus, Equation (4)

can be written as

∇L(p, q, ν) = 0, (5)

gi(p, q) ≤ 0, i ∈ {1, 2}

0 ≤ p ≤ 1, 0 ≤ q ≤ 1,

νigi(p, q) = 0, i = 1, ..., 6,

νi ≥ 0, i = 1, ..., 6.
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Theorem 4. Assume that f(i) is convex on i, where i ≥ 0,
and data packets’ arriving rate is less than data packets’
processing rate, which is to say η(µ− λ1) > γλ0, then, there
exists a vector of multipliers ν∗ ≥ 0 such that (p0, q0, ν∗) is
a saddle point of the Lagrangian function

L(p, q, ν) = −Q(p, q) +
∑
j

νjgj(p, q),

satisfying

L(p0, q0, ν) ≤ L(p0, q0, ν
∗) ≤ L(p, q, ν∗),

ν ≥ 0, and for all (p, q), where p ∈ [0, 1] and q ∈ [0, 1].
Meanwhile, (p0, q0) is the optimal solution of Equation (4).

Proof: It is clear that Q(p, q) is differential on p, q.
η(µ − λ1) > γλ0, and f(i) is convex on i, where i ≥ 0, we
can get that gi(p, q) is also differential on p, q. According to
theorem 5.1.2 and theorem 5.1.3 in [26], there exists a vector
of multipliers ν∗ ≥ 0 such that (p0, q0, ν∗) is a saddle point
of the Lagrangian function

L(p, q, ν) = −Q(p, q) +
∑
j

νjgj(p, q),

satisfying

L(p0, q0, ν) ≤ L(p0, q0, ν
∗) ≤ L(p, q, ν∗),

ν ≥ 0, for all (p, q), where p ∈ [0, 1] and q ∈ [0, 1].
Meanwhile, (p0, q0) is the optimal solution of Equation (4).

This completes the proof.
Corollary 1. If let the probabilities for data admission in

different status are the same (p = q), the cost function f(i) is
convex and non-decreasing on i(i ≥ 0), and η(µ−λ1) > γλ0,
the optimal (p; q) policy is

p = q = min{p : g1(p, q) ≥ 0, g2(p, q) ≥ 0}.

• If p = 0, the sensor should reject all arrival packets, the
throughput Q = 0;

• If p = 1, the sensor should accept all arrival packets, the
throughput Q = λ1η+λ0γ

γ+η ; and

• If p ∈ (0, 1), the throughput Q = λ1η+λ0γ
γ+η p.

Proof: η(µ − λ1) > γλ0, thus, both LR(p, q) and
LS(p, q) are non-decreasing on p and q. The cost function
f(i) is convex and non-decreasing on i(i ≥ 0). Therefore,
both g1(p, q) and g2(p, q) are non-decreasing on p and q.

When the sensor is in the active status, the sensor node
should accept data packets with probability q, where

q = min{p : g1(p, q) ≥ 0}.

When the sensor is in the sleep status, the sensor node should
accept data packets with probability p, where

p = min{p : g2(p, q) ≥ 0}.

p = q, finally, we have

q = p = min{p : g1(p, q) ≥ 0, g2(p, q) ≥ 0}.

From the function of the throughput, it is obvious that Q(p, q)
is non-decreasing on p and q. Thus, to get the maximum
throughput, p and q should be as large as possible. With the
constraints of data admission control, it is clear that if p = 0,
the sensor should reject all arrival packets, the throughput
Q = 0; if p = 1, the sensor should accept all arrival packets,
the throughput Q = λ1η+λ0γ

γ+η ; and if p ∈ (0, 1), the throughput
Q = λ1η+λ0γ

γ+η p.
The proof is completed.

V. ENERGY CONSUMPTION ANALYSIS

The analysis of power consumption is very important in
wireless sensor networks [27]. According to [15], we consider
the energy consumption in terms of the sensor node status,
number of packets transmitted, and the switches from one
status to another. We have the following definitions for power
consumption.
esr: the power consumption when the sensor switches from

the sleep status to the active status;
ers: the power consumption when the sensor switches from

the active status to the sleep status;
es: the power consumption for sensing per unit time in the

sleep status;
etr : the transmitter power consumption per data packet in the

active status;
eor : the operation power consumption per unit time in the

active status;
eos : the operation power consumption per unit time in the

sleep status.
As long as the formula of the steady-state probability is
derived, it is not difficult to find various energy consumption
measures of the sensor node. Here some results are listed to
demonstrate how to utilize this formula to obtain the node’s
performance measures.

Theorem 5. For the (p; q) scheme, the average energy con-
sumed per unit time switching from the sleep status to the
active status is γη

γ+η esr and the average energy consumed per
unit time switching from the active status to the sleep status
is γη

γ+η ers.

Proof: The sensor node consumes esr milliwatts of
power each time it switches from the sleep status to the active
status. The expected number of switching times from the sleep
mode to the active mode per unit time is

∑
i P (Si)η. Thus,

we have

ESR =
∑
i

P (Si)ηesr =
γη

γ + η
esr.

The node consumes ers milliwatts of power each time
it switches from the active status to the sleep status. The
expected number of switching times from the active mode to
the sleep mode per unit time is

∑
i P (Ri)γ. Therefore,

ERS =
∑
i

P (Ri)γers =
γη

γ + η
ers.

The proof is finished.
Remarks. From Theorem 5, with the increase of γ, the

probability that the sensor is on the sleep status increases,
and the rate of switching-off also increases. With the increase
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of η, the probability that the sensor is on the active status
increases, and the rate of switching-on increases, too. Thus,
with the increase of γ and η, the average switching energy
consumed per unit time increases.

Theorem 6. The average energy consumption in the sleep
mode ES is

ES =
γλ0p+ λ0µp+ λ1ηq − λ0λ1pq

(ηµ− γλ0p− λ1ηq)(γ + η)
γes;

and the average energy consumption in the active mode ETR
is

ETR =
γλ2

0p
2 + γλ0ηp+ λ1η

2q

(ηµ− γλ0p− λ1ηq)(γ + η)
etr.

Proof: When the node is in the sleep status, it would
consume es milliwatts of power for per packet sensing. Thus,
we have

ES =

∞∑
i=1

iP (Si)es =
γλ0p+ λ0µp+ λ1ηq − λ0λ1pq

(ηµ− γλ0p− λ1ηq)(γ + η)
γes.

When the sensor node is in the active status, it would consume
etr milliwatts of power for per packet transmitting. So,

ETR =

∞∑
i=1

iP (Ri)etr =
γλ2

0p
2 + γλ0ηp+ λ1η

2q

(ηµ− γλ0p− λ1ηq)(γ + η)
etr.

The proof is finished.
Remarks. In theorem 6, as the increase of data packets’

arriving rate λ0, λ1, both ES and ETR increase and with the
increase of data packets’ processing rate µ, both ES and ETR

decrease.

Theorem 7. The operation energy consumption in the sleep
mode EOS is

EOS =
γ

(γ + η)λ0pes
eosES ;

and the operation energy consumption in the active mode
EOT is

EOR =
η

(γ + η)(µ− λ1q)etr
eorETR.

Proof: When the node is in the sleep status, it can sense
variables from the environment and switch to Phase R. If we
denote the operation time by TS,i, when starting from the
time when there are i data packets in phase S, we have the
following probability distribution function:

P{S|Si < t} =
γ

γ + η

∞∑
k=i

PSk(t) =
γ

γ + η

∞∑
k=i

(λ0pt)
k

k!
e−λ0pt,

where t ≥ 0.
Thus, we have the probability density function as follows:

fTS,i =
(λ0pt)

i−1

(i− 1)!(γ + η)
e−λ0ptλ0pγ,

where t ≥ 0.
Therefore, the average energy consumption for the duration

of the operation with i data packets received in the sleep status,
can be given by

EOS,i = eosE[TS,i]

= eos

∫ ∞

t=0

(λ0pt)
i

(i− 1)!(γ + η)
e−λ0ptγdt

=
γeos

(γ + η)λ0p
i.

The average energy consumption for the operation of a sensor
in the phase S is

EOS =

∞∑
i=1

P (Si)EOS,i =
γeos

(γ + η)λ0pes
ES .

When the sensor node is in the active status, it can sense,
receive, transmit data packets and switch to phase S. If we
denote the operation time by TR,i, when starting from the
time when there are i data packets in phase R, we have the
following probability distribution function:

P{R|Ri < t} =
η

γ + η

∞∑
k=i

PRk(t),

where t ≥ 0.
According to [28], for an M/M/l queue, with arrival rate λ1q

and service rate µ, which begins operation at t = 0 with n data
packets in the sensor, the probability that there are i(i ≥ 0)
data packets in the sensor at time t is given by

PRi(t) =e−(λ1q+µ)t[(
λ1q

µ
)(i−n)/2Ii−n(2t

√
λ1qµ)

+ (
λ1q

µ
)(i−n−1)/2Ii+n+1(2t

√
λ1qµ)

+ (1− λ1

µ
q)(

λ1q

µ
)i

∞∑
j=i+n+2

(
λ1q

µ
)−j/2Ij(2t

√
λ1qµ)]

where t ≥ 0, and Ii(y) is the infinite series for the modified
Bessel function of the first kind.

Considering the original M/M/1 queue with an absorbing
barrier imposed at zero system size and an initial size of 1,
then the expected length of the operation period should be

1
µ−λ1q

[28]. Therefore, the average energy consumption for
the duration of the operation with i data packets received in
the active status, can be given by

EOR,i = eorE[TR,i] =
ηeor

(γ + η)(µ− λ1q)
i.

The average energy consumption for the operation of a sensor
in the phase R is

EOR =
∞∑
i=1

P (Ri)EOR,i =
ηeor

(γ + η)(µ− λ1q)etr
ETR.

The proof is finished.

VI. SIMULATION RESULTS AND ANALYSIS

To show the effectiveness of the approach above, we present
the numerical results for a set of specific parameters in this
section. In our simulation, all data simulations have been
carried out with MATLAB 7.14.0 (R2012a) on Intel Core
i5-4200M CPU (2.50 GHz, 4GB RAM). We have written
MATLAB scripts to evaluate the discussed (p; q) scheme. We
perform the simulation for a WSN using the parameters as
in [15]. Here we have simulated our model for a single node
of a WSN. These evaluations are compared with an ordinary
duty cycling scheme (the (γ; η) model) which is similar to the
model in [15]. The (γ; η) model is a classical model, in which,
on sleep status, the sensor node can only generate data packets,
but on active status, it can generate data packets, receive data
packets from other nodes and process data packets. For the
(γ; η) model, the sensor node receives all arrival data packets.
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A. Discounted rewards performance

To evaluate the average discounted reward with these two
different policies, we set the parameters for analysis as in
TABLE II. Let the cost function be f(i) = i2, i ≥ 0, and
discount factor α = 0.1, which fits the theorems’ requirements.

TABLE II: Simulation parameters
parameters α λ1 λ0 µ γ η E1 E2

values 0.1 0.6 0.3 0.9 1 1.1 20 5

As shown in TABLE II, we assume the arrival rates on sleep
status and active status are smaller than the service rate, which
represents a light traffic load. Algorithm 1 illustrates the steps
to perform (p; q) policy. With the set parameters, according to
the theorems above, we can obtain the following results.

Algorithm 1 Maximum throughput algorithm under the ad-
mission control policy

1: set R,E1, E2, f(i) /*set the reward value and cost value
in sensor node*/

2: set δ = 0 as sleep, δ = 1 as active
3: initialize λ0, λ1, µ, α, β, η, γ /*the sensor node obtains the

real-time features of itself */
4: calculate (p; q) according to equation (5)
5: if δ = 0 then
6: the sensor node accepts arrival data with probability p
7: else
8: the sensor node accepts arrival data with probability q
9: end if

Fig. 3: Throughput of a sensor node.

Fig.3 shows the throughput of a sensor node. In Fig.3, with
the increase of p and q, the value of Q increases. It is clear
with (γ; η) policy, the sensor node can achieve the highest
throughput.

With the set parameters, our objective function in this
simulation is

max
p,q

0.66q + 0.3p

2.1
,

s.t.
1.089 + 0.09p2

1.089− 0.33p− 0.726q
− 13 ≤ 0,

1.089 + 0.24p− 0.066q − 0.18pq

1.089− 0.33p− 0.726q
− 7.5 ≤ 0,

0 ≤ p ≤ 1, 0 ≤ q ≤ 1.

According to the Lagrange multipliers method, we have p0 =
0.67 and q0 = 1.0. With our Corollary, if p = q, we have
p0 = q0 = 0.89.

Fig. 4-6 illustrate the discounted reward of status ⟨0, A⟩,
⟨1, C⟩, ⟨0, C⟩, ⟨1, A⟩ and ⟨1, D⟩ with policy (γ; η), and differ-
ent (p; q) policies after 1000 times iterations. Since the value
of the discounted reward is very large, here we let the value
be 10log(v(s)). In the simulation, (p0; q0) = (0.67; 0.89),
(p1; q1) = (0.67; 1.0), (p2; q2) = (0.89; 0.89). From there
figures, it is clear to see that the discounted reward of (p; q)
policy is larger than that of (γ; η) policy.

Fig. 4: Discounted reward R = 5.

In Fig. 4, the discounted reward of (p0; q0) policy is the
largest. This is because that the reward R for per admitted
data packet is much smaller than its holding cost. It is better
to reject all data packets to get maximum discounted reward.
However, if p = q = 0, there will be no throughput.

Fig. 5: Discounted reward with R = 50.

Fig. 5 shows the discounted reward of different policies
when R = 50. Comparing with the results in Fig. 4, in Fig.
5, for all policies, as the increase of R, the discounted reward
increases. In Fig. 5, the value of the discounted reward of
the three (p; q) policies are almost the same. However, the
discounted reward of the (p1; q1) policy is a little larger than
the other two (p; q) policies.

Fig. 6 shows the discounted reward of different policies
when R = 100. From Fig. 4-6, we can get that as the
increase of R, the value of the discounted reward of all policies
increase. With different R, the gap of the discounted reward
of the three (p; q) policies are very small. From Fig. 5 and 6,
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Fig. 6: Discounted reward with R = 100.

when the discounted reward is larger than zero, the discounted
reward of (p1; q1) policy is the largest.

Fig. 7: Throughput with different policies.

Fig. 7 illustrates the throughput of different policies. It is
clear that the throughput of (γ; η) is the highest. For the
three (p; q) policies, the throughput of (p1; q1) policy is the
highest. From the simulation of throughput and discounted
reward of different status for different policies, we can get
that with (γ; η) policy, the sensor node can achieve the highest
throughput. However, the discounted reward of (γ; η) policy
is the smallest. For the (p; q), if the reward of per admitted
data packet is much large, there exists a (p; q) policy to get
a maximum throughput along with a maximum discounted
reward.

B. Energy consumption performance

In this section, we analyze the energy performance of the
optimal (p; q) policy and (γ; η) policy with holding cost
f(i) = i2, i ≥ 0. In order to evaluate the node energy
consumption, we set the parameters for analysis, as in TABLE
III. With the optimal discounted reward, Algorithm 2 concerns
performance on energy consumption with theorems in our
manuscript. Here, we give an example in our algorithm 2,
which concerns the energy consumption on active status ETR

is less than φ.

TABLE III: Simulation parameters of energy consumption
parameters etr ers esr es eos eor

values 40µw 0.5µw 15µW 10µW 15µW 25µW

Fig.8 shows the average energy consumption with different
policies. The energy consumption on active status (ETR, EOR)

Algorithm 2 The admission control Algorithm with an optimal
discounted reward concerning energy consumption

1: set i as the number of data in the sensor node (containing
the processing one)

2: set ers, esr, etr, es /*set the index value of energy con-
sumption in sensor node*/

3: set R,E1, E2, f(i) /*set the reward value and cost value
in sensor node*/

4: set δ = 0 as sleep, δ = 1 as active
5: initialize λ0, λ1, µ, α, β, η, γ /*the sensor node obtains the

real-time features of itself */
6: calculate (p; q)with equation (4)
7: calculate ETR according to Theorem 7
8: while ETR > φ do
9: adjust λ0

10: calculate (p; q)with equation (4)
11: calculate ETR according to Theorem 7
12: end while

is larger than that on sleep status (ES , EOS). It is clear to
see that the average energy consumption of (γ; η) policy is
always larger than that of (p; q) policy. For the different
optimal (p; q) policies, the energy consumption on sleep status
for data sensing (or the energy consumption on active status
for data transmitting) is almost the same. From Fig. 4-8, the
optimal (p; q) policy perform better than the (γ; η) policy on
the throughput, discounted reward and energy consumption.

Fig. 8: Energy consumption with different policies.

VII. CONCLUSION

In this article, we have proposed a (p; q) policy for the
problem of the maximum throughput under data admission
process in sensor nodes. A sensor node’s working process can
be modeled as a multi-phase queuing system in which the
fist stage is used to manage the admission of arrivals and the
second stage is used to manage the service. In the fist stage,
the node can not know the information of the queue-length
of arrival or newly sensed data packets. Thus, a (p; q) model
has been proposed in which a sensor generates data packets
with probability p on sleep status and with probability q on
active status. In the model, during data admission process,
some reward for accepting data packets and a holding cost
per unit time for data packets’ delay in the sensor have been
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considered. We have observed that, under certain assumptions,
there exists an optimal (p; q) policy to obtain the maximum
throughput during data admission process. The optimal value
of p and q for the (p; q) policy has been investigated. The
performance on energy consumption of the proposed model
has been studied. In addition, the throughput, expected dis-
counted reward and energy performance of the model through
numerical analysis have been performed. The results of this
paper can be applied in designing optimal sensor nodes in
wireless sensor networks.

APPENDIX A
PROOF OF THEOREM 2

Proof:
Here, we define that

ρ = γ/η, ρ0 = λ0/µ, ρ1 = λ1/µ,

s1 = (A−
√

A2 − 4B)/2,

r1 = (A+
√

A2 − 4B)/2,

where

A =
λ0p(λ1q + γ + µ) + λ1qη

µ(λ0p+ η)
,

B =
λ0pqλ1

µ(λ0p+ η)
.

From Theorem 1, for i = 0, 1, 2, · · · , we have

πi = π0H
i.

With the assumption that

ηµ > ηλ1 + γλ0,

p+ q ̸= 0,

So, we have s1 ̸= r1 and r1 < 1, s1 < 1. Thus, for
i = 0, 1, 2, · · · ,P (Si) =

si+1
1 −ri+1

1
s1−r1

P (S0),

P (Ri) =
si1−ri1
s1−r1

ρ0pP (S0) + [
si1−ri1
s1−r1

ρ1q − r1s
i
1−s1r

i
1

s1−r1
]P (R0).

Therefore, in the sleep status, the average number of data
packets in the sensor node is given by

LS =

∞∑
i=0

iP (Si)

=
−λ0λ1pq + γλ0p+ λ0µp+ λ1ηq

(ηµ− γλ0p− λ1ηq)(γ + η)
γ,

and in the active status, the average number of data packets
is

LR =

∞∑
i=1

iP1,i =
γλ2

0p
2 + γλ0ηp+ λ1η

2q

(ηµ− γλ0p− λ1ηq)(γ + η)
.

If p+ q = 0, it is clear that LR = LS = 0.
The proof is completed.

APPENDIX B
PROOF OF THEOREM 3

Proof: According to the analysis above, when the sensor
node is in the active status with s = ⟨1, A⟩, we have,

v
(
⟨1, A⟩, aR

)
=

1

α+ β

{
− f(LR) + λ1v

(
⟨1, A⟩

)
+ µv

(
⟨1, D⟩

)
+ γv

(
⟨1, C⟩

)
+ ηv

(
⟨1, A⟩

)}
.

From the result, we can get,

v
(
⟨1, A⟩, aR

)
≥ 1

α+ λ1 + µ+ γ

{
− f(LR) + λ1v

(
⟨1, A⟩

)
+ µv

(
⟨1, D⟩

)
+ γv

(
⟨1, C⟩

)}
=v

(
⟨0, C⟩

)
+ E1.

If an action aA is taken on the state ⟨1, A⟩, by doing a similar
analysis as above, we will know in general that

v
(
⟨1, A⟩, aA

)
=
α+ λ1 + µ+ γ

α+ β
Rq +

1

α+ β

{
− f(LR + 1)q − f(LR)(1− q)

+ λ1v
(
⟨1, A⟩

)
+ γv

(
⟨1, C⟩

)
+ µv

(
⟨1, D⟩

)
+ ηv

(
⟨1, A⟩

)}
.

If action aA is the best action at the state ⟨1, A⟩,

v(⟨1, A⟩, aA) =
f(LR)− f(LR + 1)

α+ λ1 + µ+ γ
q + v

(
⟨0, C⟩

)
+ E1 +Rq.

From the above analysis, it is not too hard to verify that,

v
(
⟨1, A⟩

)
=E1 + v

(
⟨0, C⟩

)
+max{f(LR)− f(LR + 1)

α+ λ1 + µ+ γ
q +Rq, 0}.

Similarly, for status s = ⟨0, A⟩, we get that in general,

v
(
⟨0, A⟩, aR

)
≥ v

(
⟨1, C⟩

)
+ E2,

and if action aR is the best action at the state ⟨0, A⟩,

v
(
⟨0, A⟩, aR

)
= v

(
⟨1, C⟩

)
+ E2.

Furthermore, we have in general,

v
(
⟨0, A⟩, aA

)
≥ E2 + pR+ v

(
⟨1, C⟩

)
− f(LS + 1)− f(LS)

α+ η + λ0
p,

and if action aA is the best action at the state ⟨0, A⟩,

v
(
⟨0, A⟩, aA

)
= E2 +Rp+ v

(
⟨1, C⟩

)
− f(LS + 1)− f(LS)

α+ η + λ0
p.

Finally, we will also have the following result,

v
(
⟨0, A⟩

)
=max{Rp− f(LS + 1)− f(LS)

α+ η + λ0
p, 0}+ v

(
⟨1, C⟩

)
+ E2.

For the data admission control model, since both the state
space S and the action space A are finite, the reward function
r(s, a) is also finite. From Theorem 11.3.2 of [7], the optimal
policy is a stationary deterministic policy. Thus, our problem
can be reduced to as finding a deterministic decision rule.
From the equations above, for states ⟨1, A⟩ and ⟨0, A⟩, we
have the decision rule

d
(
⟨1, A⟩

)
=

aA, R ≥ f(LR+1)−f(LR)
α+λ1+µ+γ ,

aR, R < f(LR+1)−f(LR)
α+λ1+µ+γ ,
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and

d
(
⟨0, A⟩

)
=

aA, R ≥ f(LS+1)−f(LS)
α+η+λ0

,

aR, R < f(LS+1)−f(LS)
α+η+λ0

.

This completes the proof.
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